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Abstract: When (R1,. . . ,  R,)  is a random permutation of the numbers (1 . . . .  , n), a 'near-match' at the ith place is defined to 
have occured if I R i -  i I < k, for some fixed integer k. This note studies the asymptotic distribution of the number of 
' near-matches' when k is fixed and when k is allowed to go to infinity with n. 

Introduction 

Let (R  1 . . . . .  R , )  denote a random permutation 
of the natural numbers (1, 2 . . . .  ,n) so that all the 
n! possible permutations of (1 . . . . .  n) are equally 
likely. For any fixed nonnegative integer k we say 
that a 'near-match'  has occured at the ith place if 
IRi - i I ~< k. Let 3,1, = M , ( k )  denote the number of 
near-matches. The case k = 0 corresponds to the 
classical matching problem (cf. Feller [2]). For 

~ oo, this note shows that if k is fixed and finite, 
34, has a Poisson limit with mean (2k + 1) whereas 
if k --, o¢, M,  has a normal distribution. 

In many practical problems, the number of 
near-matches may be of more interest than per- 
fect-matches i.e. with k = 0. For instance, if (i, Ri) 
denotes the ranks, say given by two judges to the 
ith contestant, i = 1 . . . . .  n, the number M, serves 
as a measure of consistency (or association) of 
these two judges. One may also consider the mea- 
sure 

tween the two judges. The measure ~/, is similar to 
the definition of Kendall 's ¢, which is based on the 
difference in the number of 'concordances'  and the 
number of 'discordances'. In this sense it is a 
competitor to the Spearman's rank correlation and 
the Kendall 's ¢ [3] and the relative performance of 
these measures will be studied elsewhere. 

Poisson limit for finite k 

For k finite, the exact distribution of the num- 
ber of near matches is a combinatorial problem 
which may be treated b y  the inclusion-exclusion 
argument (cf. Feller [2]), much as the classical 
matching problem. Our proof of the Poisson limit 
uses the probability generating function, say P, ( t )  
of M,,  i.e. 

P , ( t )  = ~ t m P ( M ,  = m) .  
m = 0  

which lies between - 1  and + 1, with values near 
+ 1 indicating a larger measure of agreement be- 

Define A i as the event 'near-match at the ith 
place', i = 1 . . . . .  n. For the sake of convenience, we 
define matches circularly, i.e., integers modulo n. 
This clearly makes no difference in the asymp- 
totics since k is finite. Consider (here I ( . )  denotes 
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the indicator function) 

e.(l+t) 

= ~_, (1 + t ) ' P ( e x a c t l y  m near matches) 
m ~ O  

=E 

R e m a r k .  When k = 0, Mn(0) is the number of 
(perfect) matches and has a Po(1) limit. This im- 
plies the classical result that P(at  least one match) 
tends to (1 - e -1) for large n. 

EZ, .m (?)t'il....,im~'. i(  Ai,, . . . .  Ai. and no others)] Normal limit for infinite k 

The near-match statistic 34, in this case can be 
E t' E I(Ai, N " ' "  NAi,)] expressed as 
1=0 i l , . . . , i  I 

t t Y'. P ( A i n  . . .  hA,,) 31,= ~ 1(IR,-il<.k)=Ea.(i,R~) 
I=0 i l , . . . , i  I 

~ .1 a l  
= i .37,  say. 

1=0 

It is easy to see, by inclusion-exclusion, that 

ate< ( 2 k +  1) t 

and also 

a, >/- (2k + 1) t -  l ( / -  1)(2k + 1 ) ' - '  

= (.2k + 1)t[1 l ( l n  1) ]. 

Thus 

2 k + 1  

[P~(1 + t) - e (2k+')t} 

~< ~ ~ ( ] ( 2 k  + 1 ) l -  a,] 
I~0 

1 
~ [/~-(2k + 1) ` l ( l -  1) 

l = 0  " n 

1 + <~n ~ It((2k 1)' 
/=o ( l - 2 ) !  

= e(Zk+l), " (2k + l)2}tl 2 
n 

Itl'(2k+ 1)' 
n + l  

which converges to zero as n ---, ~ .  Thus the prob- 
ability generating function of 34, is 

P~ ( t ) ~ e (2k+lXt-1)  

which proves that 

d 
3'/, ~ Po(2k + 1). 

where 

a, ,( i , j )=(10 i f d < ~ k w h e r e d = ( i - j ) m o d n  
otherwise, 

is defined circularly for convenience. Therefore 
combinatorial central limit theorems of the 
Wald-Wolfowitz-Noether  type (see Hajek-Sidak 
[3]) can be employed to study the asymptotic 
normality of 34,. The following result due to Motoo 
[4] is useful. See also von Bahr [1] and Hajek and 
Sidak [3]. 

T h e o r e m  (Motoo, 1957). Let R = (R 1 . . . . .  R,)  be a 
random vector which takes every permutation of 
(1 . . . .  ,n) with equal probabilities 1/n!. Let Sn = 
~=la(  i, Ri) and define 

a( i ,  . ) = n  -1 ~ a( i , j ) ,  
j = l  

a ( . , j ) = n - ' E a ( i , j ) ,  
i 

a(., 
i j 

and 

b ( i , j )  = a ( i , j ) -  a( i ,  . ) - a ( . , j )  + a ( - ,  "). 

Then 

ES. = n .~ ( . ,  .) 

and 

1 
Var(S, )  = (n - 1) ~. ~-'b2(i'J)" 

• j 
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Let c ( i , j ) =  b ( i , j ) /  ~Var(s , )  . Then 

S . - E S .  d N ( o ,  1) 

(Var(So) 
1 

i f  lim - Y'~ c 2 ( i , j )  --+ 0 
n ~  n ic(i,j)l>r 

for any r > O. [] 

Theorem. As  k and n -  k approach infinity, with 
k < (n /2 ) ,  

M . - ( 2 k + l )  a 
--) N(0 ,  1). [] 

Remark  1. The  denomina to r  on the LHS can be 
replaced by  ( ( ~  + 1) if k / n  ---, O. Compare  this 
with the case of Poisson limit. 

The asymptot ic  normal i ty  of  M,  can be estab- 
lished as a consequence of this theorem. F rom the 
definition above of a ( i , j ) ,  using again the circular 
interpretation, it is easy to check 

(2k  + 1) 
a(i' ") =a ("J )  =a ( "  ) n = p , , . ,  say. 

Thus 

b ( i , j )  = [ a ( i , j ) - p , . l  

and 

E ( M . ) = I ~  = n . a ( . ,  . ) = ( 2 k + l ) ,  

~_, Eb2(i,j) V a r ( M , ) = o  7 - ( n _ l )  i j 

n 2 

= ( n -  1-------) "pk'"'q*'" 

where qk,. = (1 - Pk,.) .  Hence  

c ( i , j ) < ~  b ( i , j )  
( n p k , . q , , . )  1 :  

Remark  2. The  results for the circular and linear 
cases are identical as long as k = 0(n2/3). This is 
because the reduct ion in /~, = ( 2 k +  1) for the 
linear case is 

( 1  2 k - I )  k ( k - 1 )  
2" + - + " ' +  

n n n 

and hence 

E lM.  (circular) - M.  (linear)l k ( k  - 1) 
~ 0  

o, non 

for  k = o(n 2/3). For  larger k, one can compute  the 
mean  and variance of M n and establish its a symp-  
totic normal i ty  using the same combinator ia l  limit 
theorem. But we omit  the details. 

Remark  3. One can also derive the normal  and 
Poisson limits, exactly on similar lines, for the 
'one-s ided nea t  matches ' ,  i.e. if a match  at the i th  
place is defined whenever  i ~< R i ~< i + k. In the 
circular case, this obviously gives the same distri- 
but ion as two-sided matches  with k replaced by  
k/2. 

and the sufficient condit ion for asymptot ic  nor- 
mali ty reduces to 

EEIb¢"J)I > . ~  b2 ( i, j ) 

~ , E j b Z ( i , j )  
0 for every r > 0. 

Clearly this happens  whenever k and (n - k )  go to 
infinity, since the numera to r  eventual ly becomes 
zero. Thus we have 
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