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Abstract: When (R,,...,R,) is a random permutation of the numbers (1,...,n), a ‘near-match’ at the ith place is defined to
have occured if |R, —i| <k, for some fixed integer k. This note studies the asymptotic distribution of the number of
‘near-matches’ when k is fixed and when & is allowed to go to infinity with ».

Introduction

Let (R,,...,R,) denote a random permutation
of the natural numbers (1, 2,...,n) so that all the
n! possible permutations of (1,...,n) are equally
likely. For any fixed nonnegative integer k we say
that a ‘near-match’ has occured at the ith place if
IR, — i< k. Let M, = M, (k) denote the number of
near-matches. The case k=0 corresponds to the
classical matching problem (cf. Feller [2]). For
& = o0, this note shows that if & is fixed and finite,
M, has a Poisson limit with mean (2k + 1) whereas
if k - 00, M, has a normal distribution.

In many practical problems, the number of
near-matches may be of more interest than per-
fect-matches i.e. with k = 0. For instance, if (i, R;)
denotes the ranks, say given by two Jjudges to the
ith contestant, i =1,...,n, the number M, serves
as a measure of consistency (or association) of

these two judges. One may also consider the mea-
sure

m= (M= ()] = 22) 1

whigh lies between —1 and +1, with values near
+1 indicating a larger measure of agreement be-

tween the two judges. The measure 7, is similar to
the definition of Kendall’s 7, which is based on the
difference in the number of ‘concordances’ and the
number of ‘discordances’. In this sense it is a
competitor to the Spearman’s rank correlation and
the Kendall’s 7 [3] and the relative performance of
these measures will be studied elsewhere.

Poisson limit for finite &

For k finite, the exact distribution of the num-
ber of near matches is a combinatorial problem
which may be treated by the inclusion—exclusion
argument (cf. Feller [2]), much as the classical
matching problem. Our proof of the Poisson limit
uses the probability generating function, say P, (#)
of M,, ie.

()= T "P(M,=m).

m=0

Define A; as the event ‘near-match at the ith
place’, i =1,...,n. For the sake of convenience, we
define matches circularly, i.e., integers modulo n.
This clearly makes no difference in the asymp-
totics since k 1s finite. Consider (here I(-) denotes
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the indicator function)

P(1+1¢)

2 (1 + ¢)™ P(exactly m near matches)

- [ZZ(, )WY 1A,

Ilsm iy,..., [
=E| X Y I(4,0n--n4,)
=0 ij,....Q,
=Y Y P(4,n NA4,)
=0 i,..., i
o0
=Zt’~i", say
= 1

It is easy to see, by inclusion-exclusion, that
a,<(2k+1)’

and also

a;>(2k+1) = 1(1-1)(2k+1)

=(-2k+1)1[l —l(ln;l)]
Thus
|P,(1+1)—e@k*D

<% —1|~|(2k+1) ~af

1_1'2k+1
n

8

<Z |t| (2k+1),l(ln Z |t| (2k+ 1)

n+1

=0 (1_ 2)'
20,2
n

which converges to zero as n — co. Thus the prob-
ability generating function of M, is

P,,(t) = ek~

which proves that

d
M, > Po(2k +1).
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Remark. When k=0, M, (0) is the number of
(perfect) matches and has a Po(1) limit. This im-
plies the classical result that P(at least one match)
tends to (1 — e~ ") for large n.

Normal limit for infinite k

The near-match statistic M, in this case can be
expressed as

M,= Y I([R,~il<k)=La,(i. R,)

i=1

where

.. 1
a (i,j)=
(i57) {0

is defined circularly for convenience. Therefore
combinatorial central limit theorems of the
Wald-Wolfowitz-Noether type (see Hajek-Sidak
{3]) can be employed to study the asymptotic
normality of M,. The following result due to Motoo
[4] is useful. See also von Bahr [1] and Hajek and
Sidak [3].

if d < k where d = (i — j)mod n
otherwise,

Theorem (Motoo, 1957). Let R=(R,,...,R,) be a
random vector which takes every permutation of
(1,...,n) with equal probabilities 1/n!. Let S,=
Yr_,a(i, R,) and define

(i, )=n"" ¥ aliJ),
a(-.)=n "' Zali.)).
(-, ) =n?E La(iJ)

and
b(i,j)=ali,j)—a(i, -)~a(-,j)+a(-, -).
Then

1 2.
) ;%‘,b (i, 7).
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Let ¢(i, j)=b(i, j)/Var(s,) . Then

S, ES, iN(O, 1)
Var(S,)
1 200
if lim — Z c*(i,j)—0

n=oo My jy=n

forany v>0. O

The asymptotic normality of M, can be estab-
lished as a consequence of this theorem. From the
definition above of a(i, j), using again the circular
interpretation, it is easy to check

=(2k+1)=

a(i, )=a(-j)=a(, )= =p, . say.
Thus

b(i,j)=[a(iaj)_pk,n]

and .

E(M,)=p,=n-a(-, )= (2k+1),
Var(M,) = 6} = 25y T Z6 ()

n2
= '(7__1) “Pin ie,n

where ¢, , = (1 - p, ,). Hence

c b{i,j
C(”J)<—(+)1/z
(npk,nqk,n)

and the sufficient condition for asymptotic nor-
mality reduces to

EZppii > rimraan (i J)
z:izjbz(i’j)

-0 foreveryr>0.

Clearly this happens whenever k and (n — k) go to
infinity, since the numerator eventually becomes
zero. Thus we have
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Theorem. As k and n — k approach infinity, with
k <(n/2),

M,—(2k+1) 4

- N(0,1). O
Vnpk.nqk,n

Remark 1. The denominator on the LHS can be
replaced by (2k +1) if k/n — 0. Compare this
with the case of Poisson limit.

Remark 2. The results for the circular and linear
cases are identical as long as k = o(n?/*). This is
because the reduction in u,=(2k+ 1) for the
linear case is

k—l)=k(k—1)

(1 2
24 (=+=+ - +
n n n n

and hence

E|M,(circular) — M, (linear)|  k(k — 1) 50
g, ho,

n n

for k = o(n?/?). For larger k, one can compute the
mean and variance of M, and establish its asymp-
totic normality using the same combinatorial limit
theorem. But we omit the details.

Remark 3. One can also derive the normal and
Poisson limits, exactly on similar lines, for the
‘one-sided near matches’, i.e. if a match at the ith
place is defined whenever i< R, <i+ k. In the
circular case, this obviously gives the same distri-
bution as two-sided matches with k replaced by
k/2.
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